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Modelling is an important subject in the Bachelor curriculum of Applied 
Mathematics at Eindhoven University of Technology in the Netherlands. 
Students not only learn how to apply their knowledge to solve 
mathematical problems posed in non-mathematical language, but also they 
learn to look actively for, or even construct, mathematical knowledge useful 
for the problem at hand. A detailed analysis of the academic profile of the 
curriculum is presented, using a framework of competencies and 
dimensions, developed at this university by the project, Academic 
Competencies and Quality Assurance (ACQA). The profile is constructed 
from the perspective of teachers’ ambitions. The research question for the 
present study is: Are there certain academic characteristics typical for the 
Modelling Track compared to the characteristics of the other courses in the 
Eindhoven Bachelor curriculum of Applied Mathematics? The analysis 
shows that the modelling projects are essential for the development of the 
designing competencies in the curriculum. Other courses in the curriculum 
are more intended to develop abstraction capabilities. These results provide 
supporting arguments for the realistic approach chosen for mathematical 
modelling education. 

In Australasia, much research focuses on mathematical modelling education. 
The vast majority of this research concerns primary and lower secondary 
schools, whereas research on higher education is relatively scarce (Stillman, 
Brown, & Galbraith, 2008). This situation is likely to be similar worldwide. 
On the other hand, what happens in the first years of university education is 
indeed relevant for pre-university education in general, as well as for 
mathematical modelling education in particular. 

A case study has been conducted in the context of university 
undergraduate education: the Bachelor program of Applied Mathematics of 
the Eindhoven University of Technology (TU/e). The importance of 
mathematical modelling in the curriculum at this site has increased since a 
curriculum reform was implemented about ten years ago. The government 
permitted the curriculum to be extended by an extra year and therefore a 
series of modelling projects could be introduced: and this sub-program is 
called the modelling track. The main reason for the introduction of the 
modelling track was employers’ dissatisfaction with the level of graduates’ 
skills. According to employers, graduates possessed sufficient technical 
skills and knowledge of various subjects, but could neither apply nor 
integrate these skills and knowledge without support. Students should be 
better prepared to solve practical problems. In general, professional 
mathematical engineering problems are not pure mathematical problems. 
Rather, they are of a multi-disciplinary nature and in their first appearance 
they do not even have a mathematical form. Students should be better able 
to transform such problems into mathematical problems: the first step of the 
modelling cycle (Perrenet & Adan, 2002). 
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Gray (1998) distinguishes three ways of presenting mathematical 
modelling: 1) various mathematical systems applied in various areas; 2) 
several mathematical systems, each applied in a single area; and 3) a single 
area of application. Our approach is closest to the first way, however, 
sometimes even the mathematics to be applied has to be discovered and 
studied by the students themselves as part of the project. Students may have 
to develop, explore and apply ‘new’ mathematics, taking various levels of 
problem details into account. For example, it can happen that, by including 
more details, a (too) complicated differential equation is obtained, which 
cannot be solved analytically, but for which the students ‘discover’ a method 
to produce a numerical solution. Alternatively, if students realise that, for 
example, `waiting’ is an important issue for their problem, they may decide 
to explore queuing theory, a subject that is taught at a later stage in the 
curriculum, and apply queuing models that fit their needs. As in practice, 
the students are brought into a situation in which it is not clear beforehand 
what (and even if) mathematics is useful to solve the problem. Therefore, the 
approach enhances three kinds of learning: learning how to model, learning 
mathematics through modelling, and learning how to apply mathematics. Within 
the variety of perspectives on modelling in mathematics education as 
discussed by Kaiser and Sriraman (2006), our approach is the closest to the 
so-called pragmatic perspective of Pollak: focussing on the goal of learning 
to apply mathematics, but doing so in the broad sense as described above.  

The approach of not telling the students beforehand what model or even 
what mathematics to apply differs from current practice in (Dutch) 
mathematical modelling education at secondary level, where usually the 
mathematical model is presented along with the problem. In this sense our 
approach is closer to the original goals of realistic mathematics education 
(RME, e.g., De Lange, 1987). This approach is not undisputed among staff of 
our department. We will elaborate on that after describing the program.  

Since the Bologna Declaration (European Ministers of Education, 1999), 
the question whether the academic level of a particular university program 
is sufficient or not, is no longer an ‘academic’ question. Compared to the 
other 44 participating European countries, The Netherlands were relatively 
quick to implement the Bachelor/Master structure as well as a new 
accreditation system. Several systems have been developed for quality 
measurement, see for example, the Dublin Descriptors (Joint Quality 
Initiative Working Group, 2004) and the TUNING system (Gonzalez & 
Wagenaar, 2003; 2005). At Eindhoven University of Technology a system of 
criteria has been developed by the Project Group for Academic 
Competencies and Quality Assurance (ACQA), which especially aims at 
higher education curricula in mathematics and science (Meijers, van 
Overveld, & Perrenet, 2005). The system is in use in the mathematics and 
science departments of several European universities. At the TU/e all 
curricula are evaluated by interviewing all teachers about their ambitions in 
the courses using the detailed ACQA framework. This framework consists 
of seven competence areas (disciplinary competence, doing research, 
designing, scientific approach, intellectual skills, co-operate/communicate, 
and context) and four dimensions of academic activities (analysis, synthesis, 
abstraction, and concretisation). The competence areas are the same for all 
disciplines; but the dimensions are discipline specific. In this paper, we will 
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present the general competence areas as well as the specific dimensions for 
Applied Mathematics. We will use the outcomes of the profile measurement 
of the Bachelor program of Applied Mathematics to analyse the role of the 
Modelling Track. The central research question of this study is the following: 
Are their certain academic characteristics typical for the Modelling Track 
compared to the characteristics of the other courses in the Eindhoven 
Bachelor program of Applied Mathematics? 

In the following sections, we first give a more detailed description of the 
Modelling Track as embedded in the Applied Mathematics Bachelor 
curriculum. Next, we explain details of the method used to measure the 
academic profile. After presenting the results, we discuss the outcomes. Our 
modelling education approach will be discussed in comparison with the 
alternative application approach. This discussion is related to the current 
debate in the Netherlands about approaches to secondary mathematics 
education. 

Modelling in the Applied Mathematics Curriculum in 
Eindhoven  

The Bachelor Curriculum 
In the Bachelor of Applied Mathematics in Eindhoven about 30 students are 
enrolling each year. In the first year, a series of compulsory courses are 
taught: analysis, algebra, probabilities and statistics, computer science, 
computer algebra, mechanics, business administration and modelling. In the 
second year compulsory courses include abstract analysis, numerical linear 
algebra, mathematical statistics, optimisation, stochastic processes and 
modelling, and some elective courses on applied mathematics. In the third 
year, there are some compulsory courses, but students also choose from 
three specialisations: statistics, probability and operations research; discrete 
mathematics and applications; or computational science and engineering, 
and then follow courses in their specialisation. The regular didactical forms 
are lectures, practicals, and a mixture of the two. However, in the modelling 
courses, Modelling 1 – 4, the students undertake a series of projects in pairs. 

The Modelling Track 
The overall learning goal of the Modelling Track is learning how to use 
mathematical skills in order to solve problems posed in non-mathematical 
language. Firstly, it concerns the ability to complete the so-called model-
cycle that consists of the following steps: 

• Problem analysis: mapping out the problem using common sense; 
• Problem translation: constructing a mathematical model for the 

problem: 
• Mathematical analysis: mathematical elaboration of (sub-) problems; 
• Implementation: implementation of the solution into a computer 

program; and 
• Retranslation: translation of the solution back to the original 

problem. 
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Secondly, it concerns the ability to work along project lines with the 
following characteristics: 

• Working according to a plan, 
• Collaborating in a small team, 
• Communicating verbally with colleagues and interested layperson 

(such as the problem owner), 
• Giving a verbal presentation to colleagues and interested layperson, 
• Reporting on paper to colleagues and interested layperson, and 
• Critically following fellow students’ mathematical activities. 
In the beginning of the track, the students perform small projects with 

intensive coaching. Gradually, the projects become larger (three projects are 
done in Modelling 1; two in Modelling 2; one in Modelling 3 and one in 
Modelling 4). The consecutive projects become more complex and the 
students work more independently. Each time each pair of students chooses 
a project assignment out of a set of possibilities. Most of the time two 
different pairs do not do the same project. Each pair has their own website 
where they present their plans and products. Integrated with the project 
work, there are courses in the first and second year on verbal presentation, 
report writing, website building, LaTeX, project planning, library usage, and 
interviewing. For each project students have to deliver an intermediate 
presentation as well as a final presentation and also a final report. The 
projects are divided according to three application areas: physical-technical 
applications, business applications, and communication and information 
applications. Examples of recent project assignments follow. 

Physical-technical Applications: Water Clock 
Three thousand years ago, the Egyptians used a simple bin of clay to keep 
track of time as shown in Figure 1. The clock consists of a bin, which is 
filled with water every day. The water in the bin seeps out very slowly 
from a hole in the bottom, and time is measured by means of small dashes 
inside the bin, where each dash indicates say, an hour. The striking feature 
is that the dashes inside the bin are distributed evenly. This is only possible 
if the side of the bin has exactly the right angle, and if the ancient 
Egyptians were precisely aware of this angle. Develop a model for the water 
clock and use this model to determine the right angle of the bin. 
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Figure 1. Water clock used by the ancient Egyptians. 

Example 1 is from the first year of the program and has been created by 
a staff member. During a period of five weeks, the students worked on it for 
about one day per week. The students applied the law of Bernouilli to 
determine the right angle, but then discovered that such a bin is not 
possible; the shape of the side of the “ideal” bin with evenly distributed 
dashes is not a straight line with a fixed angle, but a smooth curve (i.e., a 
polynomial of degree 4). The students used Mathematica to exactly 
determine this curve and they determined a bin with a straight side. The 
angle of the side was chosen in such a way that the ideal bin was well 
approximated (and that the angle was close to the angle of the bin shown in 
Figure 1). This bin with evenly distributed dashes appeared to produce 
reliable estimates for time as long as it was filled for at least a quarter of its 
content. 

Communication and Information Applications: Intelligent 
Vacuum Cleaner 

An intelligent vacuum cleaner (see Figure 2) is supposed to automatically 
clean the whole room at a given frequency, starting from the base station. Is 
it possible to develop an algorithm guiding the vacuum cleaner as fast as possible 
through an arbitrary room (with furniture) so that the whole area is cleaned? 
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Figure 2. Intelligent vacuum cleaner at base station. 

Example 2 is from the second year of the program. The project comes 
from a mathematics consultancy centre outside the university. During a 
period of twelve weeks, the students worked on the task for about one day 
per week. The students developed several heuristic algorithms to guide the 
vacuum cleaner through a room, of which only its dimensions are known in 
advance. The obstacles in the room had to be discovered by the vacuum 
cleaner. Each of these heuristics used an efficient shortest path algorithm as 
a building block. The students implemented these algorithms in Java and 
compared their performance for randomly generated rooms with obstacles. 
In addition, they investigated the effect of the size of the grid representing 
the room, the optimal location of the base station and the benefits of 
knowing in advance the exact location and size of all obstacles in the room. 

Business Applications: Elevators  
For years, waiting for the elevators in the main building of the Eindhoven 
University has been a source of irritation. In the near future, the university 
is planning a big renovation of the main building. Provide advice to the 
university with respect to the location, number and control of the elevators in the 
renovated main building. 

This example is also from the second year of the program. The project is 
derived from a current issue at the university. During a period of twelve 
weeks, the students worked on it for about one day per week. They 
developed a simulation model to evaluate the waiting times for the elevator, 
paying careful attention to assumptions and limitations of their model. They 
also developed, at their own initiative, analytical models employing ideas 
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and theory of Markov processes and Markovian queuing models with batch 
service, which are treated in the following (third) year of the curriculum. 

The Modelling Track in the Bachelor curriculum consists of two courses 
in the first year, taking up a part of 10% of that year’s study load, and two 
courses in the second year, which is about 15% of that year’s load. The third 
year is completed with a small course called Modelling 5 (somewhat more 
than 3%). The Modelling Track as a whole takes a modest part of nearly 10% 
of the Bachelor curriculum study load. Modelling 5 consists of a variety of 
activities of academic reflection on the earlier modelling courses. Examples 
of themes are the societal relevance of the modelling projects and the 
possibilities of taking another approach to the projects done before, now that 
the students have more knowledge and skills. Writing and critically reading 
essays about proposed new approaches are also part of this course. 

The experience of about ten years tells us that most students really 
appreciate these courses. The majority of the faculty has accepted them as a 
normal and important part of the curriculum, although there is some 
criticism about the fact that, contrary to the subject exams, almost every 
student passes the Modelling Track. Recently, attention has been given to 
this aspect and, as a result, more detailed rules for assessment have been 
introduced. A minority of the faculty, however, still has the opinion that 
mathematics should be taught by means of lectures and practicals only, 
while project work is ‘for kindergarten’. Some accept project work only as a 
means to apply what has been learned already. We will elaborate on this 
after presenting the results of our study.  

When we look at other curricula with modelling courses, we can 
conclude that integration with the training of presentation and report 
writing skills is rather common (e.g., Edwards & Morton, 1987; Usher & 
Earl, 1987). Contrary to some other programs, our students work in pairs, as 
the overall staff opinion is that the development of mathematical modelling 
skills should have priority over the development of skills to work in larger 
groups. In higher years, the students experience working in larger and more 
diverse groups. Burton (1997) and Houston (1998) stress the importance of 
peer assessment and peer tutoring, as occurs in our Modelling 5 course. In 
the second year of the track, recently some attention has been given to the 
theory of modelling, but the emphasis is still on creative and empirical 
model construction coached by a staff member (c.f. Giordano & Weir, 1987). 

The Method of Measuring Academic Profiles  
In this section, we turn to the measurement of the quality of education in 
science and mathematics at university level in general. After that we focus 
again on our Applied Mathematics education. As described earlier, the 
academic profile is measured by interviewing teachers about their ambitions 
in the courses. The interviewee for a course is the teacher with final 
responsibility for that course. The interview is semi-structured. The first 
main question with respect to a specific course is how much time students 
should spend – as percentages of total study load – on various areas of 
competence. Follow-up questions concern which competencies are 
addressed within each competence area and which are assessed in that 
course. The second main question asks which of the four dimensions of 
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academic acting and thinking are relevant in that course and for every 
relevant dimension, how much time students should spend on various 
levels of that dimension, each time as percentages of the total study load. 
The profile of the program, or the profile of a subset of courses, mainly 
consists of the average percentages given as answers in the course 
interviews concerned. The profile is a global description of how the students 
are supposed to work - a global description of the realistic teachers’ 
ambitions. To answer the research question, the profile of the Modelling 
Track will be compared with the profile of the set of other courses. Next we 
give an overview of the areas of competence and the dimensions with their 
levels. 

Areas of Competence 
In the revised edition of the Criteria for Academic Bachelor and Masters 
Curricula (Meijers et al., 2005), seven competence areas that (should) 
characterise a university graduate are distinguished. He or she: 

1. Is competent in one or more scientific disciplines (disciplinary 
competence). A university graduate is familiar with existing scientific 
knowledge, and has the competence to increase and develop this 
through study. 

2. Is competent in doing research (doing research). A university 
graduate has the competence to acquire new scientific knowledge 
through research. For this purpose, research means: the 
development of new knowledge and new insights in a purposeful 
and methodical way. 

3. Is competent in designing (designing). As well as carrying out 
research, many university graduates will also design. Designing is a 
synthetic activity aimed at the realisation of new or modified 
(technological) artefacts or systems with the intention of creating 
value in accordance with predefined requirements and desires (e.g., 
mobility, health). 

4. Has a scientific approach (scientific approach). A university graduate 
has a systematic approach characterised by the development and 
use of theories, models and coherent interpretations, has a critical 
attitude, and has insight into the nature of science and technology. 

5. Possesses basic intellectual skills (intellectual skills). A university 
graduate is competent in reasoning, reflecting, and forming a 
judgment. These are skills which are learned or sharpened in the 
context of a discipline, and which are generically applicable from 
then on. 

6. Is competent in co-operating and communicating (co-
operate/communicate). A university graduate has the competence of 
being able to work with and for others. This requires not only 
adequate interaction, a sense of responsibility, and leadership, but 
also good communication with colleagues and non-colleagues. He 
or she is also able to participate in a scientific or public debate. 

7. Takes account of the temporal and the social context (context). 
Science and technology are not isolated, and always have a 
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temporal and social context. Beliefs and methods have their origins; 
decisions have their consequences in time. A university graduate is 
aware of this, and has the competence to integrate these insights 
into his or her scientific work. 

The concept of competence is used as an integration of knowledge, skill, and 
attitude. A student totally possesses a particular competence if he or she has: 

• relevant knowledge of the field of study [k], 
• the skill to utilise this knowledge in appropriate contexts [s], and 
• the right attitude to utilise the knowledge acquired in these contexts 

[a].  
Clearly, competence areas have definitions in general terms, applicable 

to all disciplines. Within a discipline, interpretations can be specific. For 
example in area 4, for the discipline of Applied Mathematics, models should 
be interpreted as mathematical models. Compared to some other 
frameworks, our framework is all embracing. Well-known systems in 
Europe, like the Dublin Descriptors (Joint Quality Initiative Working Group, 
2004) and TUNING (Gonzalez & Wagenaar, 2003; 2005) under expose 
typical engineering activities like designing (area 3). A perspective such as 
that of Barrie (2006) focuses on generic academic attributes beyond 
disciplinary expertise and technical knowledge (mainly area 1, partly areas 2 
and 3), while the ACQA framework includes both categories. 

Within each area, five to eight competencies have been defined. As an 
example we present the eight competencies of area 3, designing. The 
graduate: 

3.1 Is able to reformulate ill-structured design problems. Also takes 
account of the system boundaries in this. Is able to defend this new 
interpretation against the parties involved. [ksa]  

3.2 Has creativity and synthetic skills with respect to design problems. 
[ksa] 

3.3 Is able (with supervision) to produce and execute a design plan. [ks] 
3.4 Is able to work at different levels of abstraction including the system 

level. [ks] 
3.5 Understands, where necessary, the importance of other disciplines 

(interdisciplinarity). [ks] 
3.6 Is aware of the changeability of the design process through external 

circumstances or advancing insight. [ka] 
3.7 Is able to integrate existing knowledge into a design. [ks] 
3.8 Has the skill to take design decisions, and to justify and evaluate 

these in a systematic manner. [ks] 
For each competence, we defined a Bachelor level and a Masters level. The 
Masters level should be understood as containing the Bachelor level, but 
also as being more based on attitude, independence, complexity and frontier 
knowledge. 

We illustrate these (design) competencies, by looking back at project 
examples 1 and 2, described earlier. The activities related to area 3, 
designing, are clear. In Example 1 the ideal shape of the bin is designed and 
in Example 2 various algorithms are designed to guide the vacuum cleaner 
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through a room. In Example 1, students discovered the original problem was 
ill-posed: a straight sided bin satisfying the requirement of evenly 
distributed dashes does not exist! In Example 2 the students had to explore 
the boundaries of the system. What information is available in advance and 
what information is required to efficiently guide the vacuum cleaner 
through the room? Are the sensors on the vacuum cleaner sufficient to 
determine the location and size of all obstacles? They used existing, but not 
yet taught knowledge (i.e., the shortest path algorithm) and also developed 
new heuristic algorithms. The Example 2 project was more complex than the 
Example 1 project, in part because of the relations with the external client. 
The students also had to show more independence in that last project. 
Therefore, for the project of Example 2, for some competencies in the area of 
designing even the Masters level is required. Although most other 
competence areas, disciplinary competence, scientific approach, intellectual skills, 
co-operate/communicate, and context, play some role, the students should 
spend most time designing. Doing research is not relevant. 

Dimensions: Analysis, Synthesis, Abstraction, 
Concretisation 

The framework described so far gives a global indication of two levels in 
education. What is lacking, is a detailed indication of levels of acting and 
thinking. In the ACQA project, all program directors of the Eindhoven 
University of Technology were asked what, in their opinion, were the 
characteristic ways of academic acting and thinking. Almost all mentioned 
abstracting, concretising, analysing and synthesising. From their 
explanations, the following definitions were constructed and agreed upon 
(Meijers et al., 2005; Meijers, 2006). 

• Abstracting is to bring a viewpoint (statement, model, theory) to a 
higher aggregation level through which it can be made applicable to 
more cases. The higher the aggregation level, the more abstract the 
viewpoint. 

• Concretising is the application of a general viewpoint to a case or 
situation at hand. The more aspects of a situation are involved, the 
more concrete the viewpoint. 

• Analysing is the unravelling of phenomena, systems or problems 
into sub-phenomena, sub-systems or sub-problems with a specific 
intention. The greater the number of elements involved, or the less 
clear it is what the elements of the resulting analysis are, the more 
complex the analysis. 

• Synthesising is the combining of elements (or components) into a 
coherent structure that serves a certain purpose. The result can be 
an artefact, but also a theory, interpretation or model. The greater 
the number of elements involved, or the more closely knit the 
resulting structure, the more complex the synthesis. 

Looking at mathematics education literature, often abstraction is treated 
as the most important activity (see, e.g., Gray & Tall, 2008). Sometimes, 
attention is given to processes of analysing and synthesising to support 
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abstracting (e.g., Ozmantar & Monaghan, 2008). The activity of concretising 
probably is more characteristic for Applied Mathematics than for pure 
mathematics. We acknowledge that in a process of acting and thinking all 
four categories can occur, but we will treat those as four equally important 
and independent activities. We do not regard analysing - synthesising or 
even abstracting - concretising as opposites. We will show that for the above 
definitions engaging in the activity of abstracting does not automatically 
imply that one is also de-concretising, and vice versa. 

The independence of abstracting and concretising can be illustrated with 
an example from the classical mechanics of a pendulum. In high school, a 
pendulum is considered as a point mass, suspended on an infinitely strong 
(non-elastic) rope, moving at small amplitudes, leading to a simple linear, 
second order differential equation. In a first-year mechanics course in 
university, the abstraction is made where the 'point mass' and the 
'geometrical motion' are considered irrelevant: the same differential 
equation is seen to apply to elementary linear electrical networks (e.g., with 
one capacitor and one coil). In a second-year course, perhaps, a further 
abstraction is made to arbitrary (linear) networks. Parallel to this, a 
concretisation in a course on mathematical physics could allow for 
ramifications such as the study of larger deviations, air friction, or the 
coupling between translational and rotational (torque) modes, and 
consequently take non-linear differential equations into account. A further 
concretisation could study the effect of stretching in the rope, and could take 
the interference between transversal and longitudinal motions into account, 
etcetera. So the topic of  'pendulum', studied at low abstraction and 
concretisation levels at high school, will grow both in the direction of more 
abstraction and concretisation in various courses at university; thus the 
activity of 'abstracting' is no longer the opposite of 'concretising'. They are 
both 'academic' activities that can be investigated independently. 

Looking for levels for abstracting, concretising, analysing and 
synthesizing, as a first version, uniform four-point scales were developed, 
for example, abstraction minimal – low – high – maximal. Abstraction 
minimal should be typical for the start of the Bachelor program; abstraction 
maximal should be typical for the end of the Masters program. The program 
director of a specific program should illustrate the four levels for a specific 
dimension by constructing examples, which are recognizable and well 
understood for all the staff of the program. After a trial with two programs, 
it became clear that firstly, it would be better to look at levels related to a 
discipline itself than to look at levels directly related to a specific program. 
Secondly, variation existed between disciplines in the number of levels 
needed along a specific dimension. Therefore, the choice was made to design 
a system for level construction that was essentially the same for all 
disciplines, but different in its disciplinary details. Scales for the four 
dimensions have been constructed for a number of disciplines (including 
Applied Mathematics), with the help of experts from these domains. A scale 
for a dimension in a discipline is obtained by applying a generic 
construction to a central example from the discipline. We first describe the 
generic construction principle. Next, we present the four scales used for 
(applied) mathematics.  
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Levels in a dimension are constructed in a recursive way, in which the 
result of a previous step becomes the starting point of the subsequent step, 
and every step is an instance of the activity of the dimension. Figure 3 
depicts this process for the activity of abstracting: starting from an example, 
A, B, C and D are subsequent reformulations of the example on higher levels 
of abstraction (elaborated from Meijers, 2006): 

 

 

 level 1         level 2                  level 3 

Figure 3. Construction scheme for the scale of abstracting. 

Each of the three levels in Figure 3 can be characterised by a 
combination of a description of the starting point and a description of the 
activity, for example, for level 1, 

1.1 Description of starting point A 
1.2 Description of activity (leading to result B) 

Using the same principle with the concretising, analysing, and synthesising 
activities, levels can be constructed for the other three dimensions.  

In Table 1 the four scales constructed for Applied Mathematics are 
given. Experts from the department were closely involved in the process of, 
firstly, choosing central examples for the dimensions, and, secondly, 
constructing levels based on these examples. The number of levels of the 
scale for a specific dimension in a particular discipline is not determined 
beforehand: the construction is applied until no further steps can be taken 
inside the discipline (because either the next level does not exist or it is 
considered to belong to another discipline). The idea is that the resulting 
scale ranges from the lowest to the highest level in the discipline for the 
activity concerned. This range is called the scope of the discipline with 
respect to a given dimension. For a given dimension, scales for different 
disciplines may have different numbers of levels, and the number of levels 
across the scales for the four dimensions of a single discipline may vary. In 
the case of Applied Mathematics four three-point scales resulted. Table 1 
shows clarifying examples for each dimension from lowest to highest level.  

These examples are not specifically tuned to modelling, however, all 
four dimensions are relevant in the modelling cycle. As mentioned earlier, 
the modelling cycle comprises the following steps: problem analysis, 
problem translation, mathematical analysis; implementation, and 
retranslation (Perrenet & Adan, 2002). Clearly, analysis should be an 
important modelling activity (it is mentioned twice in the cycle), but so 
should the other dimensions: synthesis comes into play when a model or 
solution is constructed from sub-solutions; abstraction appears when a 
practical problem is translated into mathematical terms; and concretisation 
applies when theories are specified or models are expanded. 

abstracting abstracting abstracting 
B B C C A D 
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Table 1 
Applied Mathematics Scales 

Dimension Scale  

Abstract 1.1 A graph of a real-valued function  
 1.2 Assessment of the continuity of this function by means of 

visual inspection of the graph 
 2.1 The intuition of continuity of a function based on visual 

inspection 
 2.2 Formalisation of continuity in terms of ε-and δ-arguments 
 3.1 A proof of the continuity of a given function using ε-en δ-

argumentation 
 3.2 A proof of the continuity of a given function by means of 

the topological definition of continuity 
Concrete  1.1 The decomposition of a vector in a generic vector space 
 1.2 Expanding a function in a Hilbert space of functions 
 2.1 Decomposition of a function in a Hilbert space of 

functions  
 2.2 Developing a periodic function as a Fourier series 
 3.1 The development of a periodic function as a Fourier 

series 
 3.2 Specifying the function as a signal and determining the 

amplitude and phase spectra 
Analytic 1.1 Set of measured data of a time sequence 
 1.2 Specification of the relevant trends (qualitatively) 
 2.1 Specification of the relevant trends from 1.2 
 2.2 Quantifying these trends in the form of new data sets 

(e.g., in terms of period or phase shift) 
 3.1 The new data sets from 2.2 
 3.2 Observation of some structural behaviour in quantitative 

trends (e.g., the phase shift increases with the period) 
Synthetic 1.1 A list of requirements for simulation of a physical process 
 1.2 Specifying methods and techniques within field of 

Scientific Computing needed to comply with the given 
requirements 

 2.1 Fully specified methods from Scientific Computing as in 
1.2 

 2.2 Assembling these specifications to obtain a numerical 
procedure 

 3.1 The description of a numerical procedure as in 2.2 
 3.2 Construction and implementation of a (prototype) 

numerical program for a simulation  
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should be an important modelling activity (it is mentioned twice in the 
cycle), but so should the other dimensions: synthesis comes into play when a 
model or solution is constructed from sub-solutions; abstraction appears 
when a practical problem is translated into mathematical terms; and 
concretisation applies when theories are specified or models are expanded.  

Project examples 1 and 2 also illustrate these dimesnions. As mentioned, 
Example 1, the Waterclock, is from the first year and Example 2, the Vacuum 
cleaner, from the second year. We will look at the dimensions analysis and 
synthesis first. Example 2 involves many aspects including: What is known 
about the room? Does the size of the memory of the vacuum cleaner limit 
the usage of algorithms? Is it possible to determine the dimensions of the 
room and location of all obstacles with the sensors on the vacuum cleaner? 
How to compare the various algorithms? In this way, both activities analysis 
and synthesis take place on a higher level in Example 2 than in Example 1, 
because more elements of the situation are involved (see the general 
definitions given). For the waterclock project some quantification was 
necessary in analysis (level 2, Table 1), for the vacuum cleaner even a 
quantitative measure had to be developed to compare algorithms (analysis 
level 3, Table 1). Next, we turn to abstraction and concretisation. Abstraction 
does not take place on the highest level: visual inspection as well as 
formularisation do take place (level 1 and 2, Table 1). However, there is no 
abstraction above that level. On the other hand, concretisation was applied 
while always taking all relevant aspects of the situation into account: level 3 
(Table 1) only.  

We now proceed to measuring results for the Applied Mathematics 
program and the Modelling Track as a part of this program. 

Results 
In total, 46 course interviews were held including all five courses of the 
Modelling Track. The average length of an interview was one hour. Almost 
every interviewee was able to give the percentages asked for indicating how 
students should divide their time for each course using the framework of 
competencies and dimensions (in an exceptional case, the option to include 
an uncertainty band in the answer was used). This means that the 
dimensions and the constructed level examples were generally recognised 
and could be used well by the staff. This adds to the validity of the method. 
Another positive aspect of validity followed from the fact that the profile of 
the Bachelor program differed from that of both Masters programs (not 
described in this paper; see Projectgroep Academische Vorming, 2007) in a 
way that could be explained well and used by the program management. In 
the following sections, we compare the results for the five courses of the 
Modelling Track with the results for the other courses, beginning with the 
perspective of competence areas and competencies, and continuing with the 
perspective of dimensions and levels. 

Comparison: Competence Areas 
Figure 4 compares the Modelling Track to the rest of the curriculum from 
the perspective of competence areas. The unit along the radial axes is the 
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percentage of the total study load of the curriculum. The accumulated 
results of the interviews show that in the Modelling Track the students 
should spend most of their study time in area 3 (nearly 5% out of 10% of the 
Modelling Track as a whole), while in the rest of the curriculum relatively 
most time should be devoted to area 1 (more than 35% out of 90% for the 
other courses together).  
 
 
 

 

 

Figure 4. Student study time to be spent on seven competence areas, for the 
Modelling Track and for the other Applied Mathematics Bachelor courses.   

1 = disciplinary competence; 2 = doing research; 3 = designing; 4 = scientific 
approach; 5 = intellectual skills; 6 = co-operate/communicate; 7 = context. 

We conclude that compared to the average of other courses the 
Modelling Track is very strong on designing competencies. When we 
analysed the difference at the level of specific designing competencies, it was 
found that all seven competencies were present in both sub-programs. 
According to the staff interviewed, only in the Modelling Track were three 
of those competencies already aimed for at Masters level, (i.e., in the second 
year projects). These competencies – with the Master level characteristic in 
italics – are (a) is able to reformulate ill-structured design problems of 
complex nature; (b) has creativity and synthetic skills with respect to complex 
design problems; and (c) is able to independently produce and execute a 
design plan. Assessment of these competencies at the last phase of these 
projects is at Masters level also. 

Comparison: Dimensions 
In Figure 5, the Modelling Track is compared with the rest of the 

curriculum from the perspective of the dimension of abstraction. In Figure 
5a, the accumulated results of the interviews indicate that abstracting 
activities are relevant in the Modelling Track and that for about 40% of the 
time devoted to these activities, students should act and think on level 1 and 
that for about 60% of the time on level 2. No activities were aimed at level 3 
(see Table 1). We conclude that for the Modelling Track, level 3 abstraction is 
absent; in the rest of the curriculum (Figure 5b) all three abstraction levels 
are present.  
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         (a)           (b) 

Figure 5. Student study time to be spent on levels of abstraction, for the 
Modelling Track and for the other Applied Mathematics Bachelor courses. 

In Figure 6, the Modelling Track is compared to the rest of the 
curriculum from the perspective of the concretisation dimension. For the 
Modelling Track, only level 3 concretisation is present (Figure 6a); in the rest 
of the curriculum all three concretisation levels are present (Figure 6b). 
When the Modelling Track (Figure 7a) is compared to the rest of the 
curriculum (Figure 7b) from the perspective of the analysis dimension, we 
conclude that for analysing, the two patterns do not differ much; but in the 
Modelling Track level 2 analysing is somewhat more important. 
Comparison of the Modelling Track  (Figure 8a) to the rest of the curriculum 
(Figure 8b) from the perspective of the synthesis dimension revealed  that, 
on average, level 3 synthesising is more important for the Modelling Track 
than for the rest of the curriculum. 

 

          (a)         (b) 

Figure 6. Student study time to be spent on levels of concretisation for the for 
Modelling Track and the other Applied Mathematics Bachelor courses.
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           (a)           (b) 

Figure 7. Student study time to be spent on levels of analysing for the 
Modelling Track and for the other Applied Mathematics Bachelor courses. 

               (a)             (b) 

Figure 8. Student study time to be spent on levels of synthesising for the 
Modelling Track and for the other Applied Mathematics Bachelor courses. 

Summarising, the Modelling Track, on average has, a higher level of 
concretising and synthesising; the other courses, on average, have a higher 
level of abstracting. We also analysed the number of levels of a certain 
dimension, attended to within the same course. This led to the following 
accumulated results:  

• the Modelling Track, on average, has more levels of analysing and 
synthesising attended to within the same course; whilst 

• the other courses, on average, have more levels of abstracting and 
concretising attended to within the same course. 

Conclusions and Discussion 
The results show that the Modelling Track is crucial for the curriculum 
profile of the Bachelor program. It strengthens the competence area of 
designing in particular. At the level of individual competencies, some 
competencies are already at Masters level, such as reformulating ill-
structured complex design problems, creativity and synthetic skills for 
complex design problems, independently producing and executing a design 
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plan. Also, in the modelling projects, students have to create and apply 
mathematics while taking much detail of the problem situation into account 
(high level of concretising). Finally, within a modelling project, they have to 
use their analytic and synthetic skills at several levels of complexity, 
zooming in and zooming out of the problem situation. Nevertheless, the 
majority of students succeeded in the modelling projects and really 
appreciate this kind of work. One of the reasons given is the freedom in 
approaching the problem: the students are not forced to apply prescribed 
models and techniques. A small minority do not succeed the first time and 
have to do extra assignments. Few students complain about the situation 
that only later in the curriculum do they meet the best method to solve a 
particular modelling assignment. These results effectively counter the 
criticism of some staff members. 

On the other hand, the level of abstraction aimed for in the Modelling 
Track is somewhat lower, compared to many other courses in the 
curriculum. Considering ways of raising the level of abstraction, one 
possibility could be the introduction of lectures on the methodology of 
mathematical modelling, which recently has occurred. Another possibility is 
the following: using the activity of generalisation as an aspect of abstraction. 
After the problem has been solved, and after the mathematical solution has 
been interpreted in the original context and validated, the following 
question could be asked systematically at the end of every modelling 
project: Is it possible to generalise the applied method to a larger class of problems, 
and if so, in what ways? Normally, this question is not asked, as the students, 
the tutor and the problem owner will be happy when the problem at hand 
has been solved to everyone’s satisfaction. However, in case the students 
have used self-developed methods or have applied newly studied 
mathematical theory, this could be too difficult a task. It might be better to 
leave these kinds of questions to the other subject courses. The argument of 
some faculty members would be: ‘Teach them the models and methods 
beforehand, so they only have to apply these so that much more abstraction 
will be possible at the end’. However, the loss would be more severe. It 
would undermine the training in the important (and realistic) first phase of 
the modelling cycle: in real life it is not immediately clear which method to 
use, and ready-made methods do not present themselves. Moreover, having 
developed new methods or having discovered new mathematical theory 
(which of course, does not happen in every modelling project) may have the 
great benefit that these topics will be much better understood by students 
when these topics are taught later in the program.  

The previous discussion is like an echo of a more overt discussion about 
mathematics education at secondary and primary level in the Netherlands. 
Louder and louder, criticism is heard about the use of realistic contexts as 
propagated by the adepts of realistic mathematics education (RME). RME 
advises the use of contexts in two ways, as a starting point for the 
development of mathematical concepts, and as a domain for application of 
mathematical contexts (Doorman et al., 2007). See the website 
http://www.fi.uu.nl/en/ for the general RME background. Their 
adversaries, united in the Association for Better Education in the 
Netherlands (BON - In Dutch: Beter Onderwijs Nederland), plea for much 
fewer contexts and more training in pure algebra (see 
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http://beteronderwijsnederland.net/ for background information - only in 
Dutch). The discussion has been so heated now and then, that some even 
speak of a ‘math war’ (Feys & Van Biervliet, 2008). Dutch mathematical 
modelling education at secondary level has already become injured by this 
war, as it receives less attention in the latest curriculum plans. 

It is beyond the scope of this paper to give a substantiated opinion about 
how modelling should be learnt at secondary education. However, we have 
made it clear that, in higher education, at a technical university, 
mathematical modelling, although embedded in a more abstraction oriented 
curriculum, should be learned in a realistic way. This case study shows that 
the realistic way is also an academic way.  
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